Sputum-Derived Cellular Profiles Produced by Flow Cytometric Analysis

Lydia H. Bederka, Shao-Chiang Lai, Jennifer Rebeles, Marcia H. Grayson, Xavier T. Reveles, and Vivienne I. Rebel

bioAffinity Technologies, Inc., San Antonio, TX

bioAffinity TECHNOLOGIES

Squamous epithelial cells excluded from analysis via viability dye staining

- Sputum liquefaction using warmed NAC and DTT
- Nylon strainer filtration to collect single cell suspension
- Average cell yield per sputum sample: 20 x 10⁶ total cells
- Average cell viability per sample: 65%
- Average squamous epithelial cell (SEC) contamination: 20%

Sputum-derived cellular profiles split into two lineages: leukocytes (CD45⁺) and non-leukocytes (CD45⁻) Live cells <u>CD45⁺ cells</u> <u>CD45⁺ cells</u>

High-throughput sputum analysis for clinical diagnosis

- We chose to investigate whether sputum can be analyzed on a flow cytometry platform analogous to its use for the diagnosis of hematologic malignancies.
- Sputum donors used the acapella[®] airway assist device (Smiths Medical) to collect sputum over a 3-day period.
- Samples were processed into a single cell suspension and analyzed efficiently by flow cytometry.
- Reproducible profiles of sputum for both the leukocyte and non-leukocyte lineages were obtained.
- □ The presence of both alveolar macrophages and bronchial epithelial cells indicate that the sputum sample represented the environment of the lung.
- Our data reveals that flow cytometers can analyze samples isolated from sputum in a highthroughput manner that can be developed for diagnostics of lung health.