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Abstract 

Background Low‑dose spiral computed tomography (LDCT) may not lead to a clear treatment path when small to 
intermediate‑sized lung nodules are identified. We have combined flow cytometry and machine learning to develop 
a sputum‑based test (CyPath Lung) that can assist physicians in decision‑making in such cases.

Methods Single cell suspensions prepared from induced sputum samples collected over three consecutive days 
were labeled with a viability dye to exclude dead cells, antibodies to distinguish cell types, and a porphyrin to label 
cancer‑associated cells. The labeled cell suspension was run on a flow cytometer and the data collected. An analysis 
pipeline combining automated flow cytometry data processing with machine learning was developed to distinguish 
cancer from non‑cancer samples from 150 patients at high risk of whom 28 had lung cancer. Flow data and patient 
features were evaluated to identify predictors of lung cancer. Random training and test sets were chosen to evaluate 
predictive variables iteratively until a robust model was identified. The final model was tested on a second, independ‑
ent group of 32 samples, including six samples from patients diagnosed with lung cancer.

Results Automated analysis combined with machine learning resulted in a predictive model that achieved an area 
under the ROC curve (AUC) of 0.89 (95% CI 0.83–0.89). The sensitivity and specificity were 82% and 88%, respectively, 
and the negative and positive predictive values 96% and 61%, respectively. Importantly, the test was 92% sensitive 
and 87% specific in cases when nodules were < 20 mm (AUC of 0.94; 95% CI 0.89–0.99). Testing of the model on an 
independent second set of samples showed an AUC of 0.85 (95% CI 0.71–0.98) with an 83% sensitivity, 77% specific‑
ity, 95% negative predictive value and 45% positive predictive value. The model is robust to differences in sample 
processing and disease state.

Conclusion CyPath Lung correctly classifies samples as cancer or non‑cancer with high accuracy, including from 
participants at different disease stages and with nodules < 20 mm in diameter. This test is intended for use after lung 
cancer screening to improve early‑stage lung cancer diagnosis.
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Background
Early detection of lung cancer through screening can 
increase survival and reduce morbidity [1, 2]. The US 
and regions of the UK recommend annual low-dose com-
puted tomography (LDCT) screening for high-risk indi-
viduals [3]. Although LDCT is very sensitive (93.8%) in 
detecting cancerous pulmonary nodules [4], its specificity 
is much lower (73.4%) because nodular images can be the 
result of various non-cancerous processes [5]. A positive 
LDCT therefore requires follow-up tests to determine if 
the nodule is malignant [6]. These medical procedures 
have inherent morbidity and mortality risks and can 
impose a serious burden on screening participants [7], 
while associated costs represent significant financial bur-
dens to patients [8] and society [9, 10].

Efforts are underway to develop non-invasive tests that 
can be used after LDCT to improve screening’s predictive 
value [11, 12] or as stand-alone tests to identify people 
who should undergo screening [11, 13]. These tests aim 
to reduce unnecessary medical procedures while identi-
fying those with lung cancer at an early stage. Sputum is 
easily accessible lung material that contains a variety of 
leukocytes and exfoliated bronchial epithelial cells [14], 
including premalignant and malignant cells in patients 
with lung cancer [15]. We have previously reported on a 
slide-based microscopy assay that classified cancer and 
non-cancer patients using sputum stained with tetra(4-
carboxyphenyl)porphyrin (TCPP) [16]. Although 81% 
accurate, reading slides was time-consuming, subject to 
observer bias and could potentially miss key events by 
not evaluating the entire sample. We now report on a 
high-throughput approach using automated flow cytom-
etry (FCM) instead of microscopy. FCM allows us to 
interrogate the entire sputum sample using TCPP and a 
panel of antibodies to capture cancer-predictive features 
in sputum. The field of automated FCM analysis has pro-
duced powerful software tools [17–19] that match or 
exceed human expertise in identifying cell populations of 
clinical importance [20]. We adapted these tools to cre-
ate an automated FCM sputum analysis platform, thereby 
eliminating potential operator bias [21].

Automated FCM techniques have been combined with 
machine learning approaches to distinguish leukemias 
from non-neoplastic cytopenias [22] and for biomarker 
discovery [23]. We hypothesized that the same combina-
tion of approaches could be used to identify sputum fea-
tures indicative for lung cancer in high-risk patients. Our 
objective was to develop an assay (referred to as CyPath 
Lung) that combines automated FCM data analysis of 
induced sputum samples with machine learning tech-
niques to classify sputum samples as cancer or non-can-
cer. CyPath Lung is intended for use following screening 
to improve diagnosis of early-stage lung cancer.

Methods
Collection sites
Participants were identified and enrolled at a physi-
cian’s or study coordinator’s office at one of the following 
sites: Atlantic Health System, NJ; Mt. Sinai Hospital, NY; 
Radiology Associates of Albuquerque, NM; South Texas 
Veterans Healthcare System, TX; and Waterbury Pulmo-
nary Associates, CT. Each site had received institutional 
approval to participate in the study. Samples were col-
lected from April 2018 till November 2019 (LSRII sam-
ple set) and from July 2020 till November 2021 (Navios 
sample set).

Participant information
Participants (males and females) were enrolled in one of 
two groups. The non-cancer group included participants 
(aged 52–79) who were either current smokers with a 
smoking history of at least 20 pack-years, or current 
non-smokers with a smoking history of at least 20 pack-
years, who quit smoking within the past 15  years. The 
exceptions were two participants: one had quit smoking 
26  years ago and one had smoked for 11.5 pack years. 
Most participants in the non-cancer group had received 
an LDCT result or other form of imaging that was not 
suspicious for cancer, and they were advised to return 
for LDCT screening in 12  months. In a few cases, par-
ticipants initially placed in the non-cancer group under-
went a follow-up LDCT, PET/CT or a biopsy. These 
participants were followed until their health status was 
confirmed. If they were diagnosed with lung cancer, they 
were switched to the cancer group.

Each participant in the cancer group had been evalu-
ated by a physician as highly suspect of having lung 
cancer based on medical history and LDCT or other 
imaging results. The diagnosis was confirmed by biopsy 
after a sputum sample was provided. The exception was 
a patient who had developed a new nodule of 24 mm and 
who was too fragile to undergo biopsy. If biopsy showed 
no cancer, the participant was switched to the non-can-
cer group. There was no limitation of age or smoking his-
tory for enrollment in the cancer group.

For each participant we collected the following demo-
graphic data: gender (male or female); age (years); ethnic-
ity (Hispanic/Latino or non-Hispanic/Latino); and race 
(American Indian/Alaska native; Asian; Black/African 
American; native Hawaiian/other Pacific islander; White; 
other). Data on smoking history was collected, as well 
as data on comorbidities (asthma, COPD, emphysema, 
chronic bronchitis) and previous cancer history. All par-
ticipants needed to be willing to provide a primary care 
physician’s contact information and agree to have medi-
cal information released if requested. Exclusion criteria 
included the presence of severe obstructive lung disease 
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and inability to cough with sufficient exertion to produce 
a sputum sample, angina with minimal exertion, and 
pregnancy.

Sample collection
Sample donors were trained on how to use the acapella 
assist device (Smiths Medical, St. Paul, MN), and expel 
their sample by coughing into a specimen cup, repeat-
ing this procedure at home for three consecutive days 
and storing their specimen cup in a refrigerator. Sample 
donors did not report experiencing any adverse events 
related to the sample collection procedure. Within one 
day after collection was completed, the sample was 
shipped overnight to the bioAffinity laboratory where 
further processing and FCM analysis took place by tech-
nicians blinded to the origin of the sample as well as the 
clinical information of the donor.

A set of 171 sputum samples was analyzed on the LSRII 
flow cytometer. One hundred and sixty-eight of the LSRII 
sample set were used for training and testing the model, 
as well as for developing the analysis pipeline. The final 
model was then validated on 150 LSRII samples that 
passed quality control. A second set of 45 samples was 
analyzed on the Navios EX. Thirty-two passed quality 
control and were used to independently measure the gen-
erality of the model/analysis pipeline by excluding a pos-
sible dependency on a particular flow cytometer or team 
of researchers. See Fig. 1 for more details.

This included four samples for which we did not have 
a definitive disease status because the addition of unla-
beled samples had been shown to be helpful in model 
building [24].

Sample size considerations
Enrolment for the LSRII data set continued until suf-
ficient cancer samples were collected to build a robust 
model for automated analysis. For test development and 
model training, we needed enough cancer samples in 
order to create subsets of samples through repeated ran-
domization that would allow us to evaluate cancer pre-
dictor selection without repeatedly ending up with the 
same small number of cancer samples driving the model 
fitting. With 28 out of 150 samples being a cancer sample 
(~ 19%), we would be able to create   > 3 million different 
training sets, each consisting of 100 samples (including 
20 cancer samples, 20%). Three million different training 
sets are more than enough to test a wide range of poten-
tial parameters without a strong selection bias, while 
maintaining the cancer / non-cancer sample ratio of the 
entire sample set.

The Navios data set represents the number of samples 
recruited between establishing the analysis pipeline and 
the start of drafting this manuscript.

Sputum processing
Sputum was dissociated and labeled using recently pub-
lished protocols [25, 26]. Briefly, sputum samples were 
incubated with a mixture of 0.1% dithiothreitol and 0.5% 
N-acetyl-l-cysteine for 15 min at room temperature and 
neutralized with Hank’s Balanced Salt Solution (HBSS). 
Cells were then filtered through a 100-micron nylon 
strainer, washed and re-suspended in HBSS. Total cell 
yield was determined using trypan blue exclusion.

A small aliquot of cells was set aside for use as con-
trols while the majority was divided into two tubes for 
the main analysis. Both tubes were labeled with Fixable 
Viability Stain 510 (FVS510) and CD45-PE. One tube, 
the “blood tube”, received CD66b-FITC (to identify 
granulocytes), CD3-Alexa-Fluor-488 (T-cells), CD19-
Alexa-Fluor-488 (B-cells) and CD206-PE-CF594 (mac-
rophages). In the other tube, the “epithelial tube”, cells 
were labeled with the epithelial cell markers pan-cytoker-
atin (Pan-CK)-Alexa-Fluor-488 and EpCAM-PE-CF594. 
Cells were incubated for 35  min on ice, protected from 
light. After washing with HBSS, cells were fixed and 
stored on ice until the next day, when a TCPP solution 
(20 µg/mL) was added (3.3 ×  106 cells/ml; 1:1 v/v) for 1 h. 
Cells were washed twice and kept on ice and protected 
from light until analysis.

Flow cytometry
Sputum samples were acquired on a BD LSRII flow 
cytometer (BD Biosciences) equipped with four lasers 
(405 nm, 488 nm, 561 nm, and 633 nm) or on a Navios 
EX (Beckman Coulter Life Sciences) equipped with three 
lasers (405 nm, 488 nm and 638 nm). The settings used 
on each flow cytometer had been previously shown to 
generate similar sputum profiles [25].

Results
Automated flow cytometric selection of viable single cells
The first stage of the CyPath Lung assay is the automated 
FCM identification of viable single cells (Fig. 2). The FCM 
component of the test consists of two assay tubes, one 
labelled with blood cell markers and one with epithelial 
cell markers [25]. Cells in both tubes were also labeled 
with anti-CD45 antibodies which selectively bind leu-
kocytes, a viability dye to eliminate dead cells, including 
squamous epithelial cells (SECs) [27], and TCPP to iden-
tify cancer or cancer-associated cells [28]. Fluorescence 
intensities from antibody and TCPP staining were used 
exclusively for downstream numerical analysis.

Each sample run included polystyrene beads of 
known diameter (5–30 µm NIST beads), compensation 
tubes for each fluorochrome channel used, unstained 
sputum, and an antibody isotype sputum control. Each 
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tube corresponded to a single Flow Cytometry Stand-
ard (FCS) file that contained sample metadata and per 
event values for each light and fluorescence channel 

acquired plus a Time parameter recorded as tubes are 
run.

Fig. 1 Utilization of Sputum Samples. Of the 171 samples run on the LSRII that were originally considered (136 non‑cancer; 31 cancer; 4 with 
unconfirmed health status), 168 samples were used for model building and analysis pipeline development. This included four samples for which 
we did not have a definitive disease status because the addition of unlabeled samples had been shown to be helpful in model building [24]. 
In addition, 14 samples flagged as ineligible based on cell counts (see below) were also used in the model development to better capture the 
distribution of the underlying data and help make generalization of the model more robust to sample noise. Three samples could not be used at all 
due to technical problems during acquisition. One hundred and fifty samples were ultimately used for the model validation phase (122 non‑cancer; 
28 cancer). Eighteen of the 168 samples were omitted: thirteen included too few cells for an accurate analysis, one included too few alveolar 
macrophages thereby failing to confirm it as a lung sample, and four samples were excluded because their cohort status could not be confirmed. 
An independent validation of the automated analysis was performed with 32 new samples. Participants adhered to the same enrollment criteria, 
and samples were processed with the same protocol as the previous sample set. Although a different flow cytometer (Navios EX) was used to run 
the second set of samples, the same model and coefficients were used to analyze the data for both instruments
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As shown in Fig. 2A, the first step was to restrict events 
based on forward (FSC-A) and side (SSC-A) scatter area, 
both reasonable surrogates for cell size [29]. A two-
dimensional cluster gate identified the dominant peak 
of 5 µm NIST beads in FSC-A vs SSC-A (Fig. 2A(i)). The 
lower FSC-A limit of the bead cluster was set as the mini-
mum sample FSC-A to exclude small particulates and 
debris. Upper limits of 2.5 ×  105 were set on both FSC-A 
and SSC-A since events above those thresholds were 
found to be dead  (FVS510+) cells (Fig. 2A and A(ii)).

Events within the bead size exclusion (BSE) gate were 
then restricted to exclude a population with unusual 
FSC and SSC height profiles (Fig.  2B) and a staining 
profile that might result in their inappropriate inclu-
sion in downstream analyses (Fig.  2B(iii)). Exclusion of 

unusual-looking populations is warranted in general 
[30]. In our case, it is important to exclude these spurious 
events to avoid including them in viable cell counts since 
the decision to include a sample for full analysis depends 
on total viable singlets.

Cells below the threshold for FVS510-positivity were 
retained (Fig.  2C). Heuristics based on subpopulations 
most likely to contain viable singlet cells (i.e., relatively 
small in area and height in light scatter channels) were 
used to guide its positioning (Fig. 3 and Additional file 1).

A “singlets” gate (FSC-Area vs FSC-Width) excluded 
cell doublets or small aggregates (Fig. 2D). In some sam-
ples, high SSC-A cells are included in the viable cell 
population and distort the results of the singlets gating 
algorithm. This can be corrected by fitting the gate to a 
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observation that events above that threshold on both forward (FSC) and side (SSC) scatter area are dead cells (ii inset; FVS510 viability histogram). 
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downstream numerical analysis. FI: Fluorescence Intensity
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temporary subpopulation excluding most of these high 
SSC-A events (Fig. 4A–D). In other samples, two popu-
lations can be seen within the viable cell gate, one with 
low FVS510 staining and the other just below the viability 
threshold and with a high side scatter profile (Fig.  4E–
H). The correction involves resetting the viability gate 
and fitting the singlets gate to the more restricted viable 
population (see Additional file 1 for more details). Light 
scatter and fluorescence signal values were recorded for 
each single event and used for downstream model devel-
opment and validation.

Development of the CyPath Lung cancer/non‑cancer 
classifier
The second stage of the CyPath Lung assay is the analy-
sis of light scatter and fluorescence signals from the via-
ble single cells identified in the first stage by automated 
FCM. Logistic regression models describe a relation-
ship between predictor variables and a categorical (in 
our case binary cancer/non-cancer) response variable. 
We measure our model’s performance by comparing its 
prediction of whether a sample is cancer or non-cancer 
(the response variable) to the known cancer/non-cancer 
status of the samples. Stepwise regression is a supervised 
machine learning process by which potentially predictive 
variables are added and removed and the resulting model 
examined for goodness of fit (see Additional file  1 for 
details). Demographic and clinical data (see Table 1) were 
included as potential predictors. Age was the only clinical 
parameter repeatedly rated as significant during forward 
and reverse stepwise regression.

Based on our earlier slide-based assay results, we antic-
ipated that smoking history (or correlated factors like 
age) and TCPP signal density (as opposed to fluorescence 
intensity itself ) would be important predictors [16]. We 
therefore divided the fluorescence signals of all channels 
by  log10 FSC-A or  log10 SSC-A and partitioned the result-
ing density distribution into three regions (< 0.25, 0.25–
0.6, > 0.6, Fig.  5A–D). Two such density signals proved 
informative for the classifier: TCPP/log10SSC-A (Fig. 5A, 
region 3 [R3]) and FVS510-A/log10FSC-A (Fig. 5C, region 
2 [R2]). The predictive value of TCPP/log10SSC-A signal 
density was not imposed upon the stepwise regression 
but emerged spontaneously. The fact that FVS510-A 
signal density was also found to be informative is inter-
esting and may be related to the fact that apoptotic cells 

can take up this dye at intermediate levels [31]. No other 
single blood or epithelial fluorescence signal density was 
robustly and repeatedly identified as a predictor.

Combinations of lineage markers can identify sub-
populations that single markers alone may not capture. 
Careful examination of patient samples revealed complex 
patterns of lineage marker expression in blood and epi-
thelial tubes. Although there were differences between 
the non-cancer and cancer groups [26], we could not 
directly identify any subpopulation independently pre-
dictive of cancer by gating. Consequently, we decided 
to use a numerical approach to the analysis of pairwise 
markers by partitioning fluorescence based on signal dis-
tribution in blood (Fig. 5E, F) and epithelial tubes (data 
not shown). Signal intensity on the logicle scale was 
quantized into low (< 1.5), low-mid (1.5–2.5), mid (2.5–
3), and high (> 3) windows. Events per 10,000 were tabu-
lated for each area of the resulting 4 × 4 grid of CD206 vs 
CD3/CD19/CD66b (blood tube) or EpCAM vs Pan-CK 
(epithelial tube; not shown). One area in the blood signal 
intensity grid was found to be informative for the model 
(tan-shaded rectangle; low for CD206 and mid-level for 
CD3/CD19/CD66b, Fig.  5E). This population may indi-
cate the presence of immune or inflammatory processes 
in the lung [32].

Once we had reduced the list of potential predictors 
to those that were most promising, we tested for pair-
wise interactions between them. One interaction proved 
informative: adding a negative value proportional to 
[age x number of events in FVS510-A/log10FSC-A R2] 
improved the classifier’s performance. Our interpretation 
of this interaction term is that it serves to moderate a 
possibly age-related accumulation of stressed cells in the 
non-cancer patient group as a consequence of smoking 
or health history [33].

Running the CyPath Lung assay pipeline
Having developed the two stages of the CyPath Lung 
assay, we could now assemble the full pipeline, including 
quality control steps, determination of predictive variable 
values, and classification of samples (Fig. 6).

Sample quality assessment begins by ensuring that 
the data file for each collection tube is readable and 
that its encoded data matrix is complete. Next, the 
Time signature is used to examine fluorescence chan-
nels in each tube and to remove anomalies in the flow 

(See figure on next page.)
Fig. 3 Heuristics‑guided Viability Gate Setting. A Set a temporary flowClust gate on Non‑debris events in FSC‑H vs SSC‑H to retain mostly live cells 
for eventual FVS510 tail gating (“core viable gate”). B For samples with < 10% events in the core viable gate, rerun flowClust more inclusively by 
increasing “quantile” parameter to 0.99. C Set a temporary singlets gate on core viable events, forcing the capture of the upper diagonal by setting 
the top right point to 2.5 ×  105 on both axes. D A tail gate with 10% tolerance is set automatically on the core viable singlets (black histogram). 
Shown in blue is the full Non‑debris FVS510 profile for comparison. The red bar indicates the viability gate cutoff. Viable events are to the left of the 
threshold. All temporary gates are removed once the threshold is determined
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rate arising from bubbles or clogs during sample acqui-
sition [34]. Fluorescence compensation tubes are used 
to derive the compensation matrix de novo (as opposed 
to using the compensation matrix encoded in the sam-
ple file metadata). Fluorescence signal is compensated 
and transformed to the logicle scale [35] to produce the 
sample data matrix used by the automated FCM gating 
to isolate viable singlet events. In order to have confi-
dence in the downstream numerical analysis, given 
potentially small numbers of events in some analysis 
windows, we required that samples contain at least 
10,000 viable singlets. We also required that at least 10 
cells be present in the green-shaded area of Fig.  5E in 
which we find lung macrophages  (CD206mid&highCD3/
CD19/CD66blow−mid) [36] to confirm that the sputum 
sample originated in the lung.

The next step in the assay pipeline (Fig. 6) is to supply 
age in years and flow-based values from viable singlets 
to the classifier model. The likelihood of having cancer 
depends on four variables: age, number of events per 
10,000 viable singlets (per 10K) with TCPP/log10SSC-
A in Region 3 (Fig. 5A, R3), number of events per 10K 
with FVS510-A/log10FSC-A in Region 2 (Fig.  5C, R2), 
and number of events per 10K in the  CD206lowCD3/
CD19CD66bmid sector (Fig.  5E, tan shading). In addi-
tion, the model contains a negative term for the interac-
tion between age and the FVS510 density variable and 
an “intercept” term  (b0). The intercept term improves 
model fitting by not forcing the fitted line through 0 
if all the variables are set to zero, but it is not directly 
interpretable as a biologically meaningful component 
of the classifier. The values of the coefficients  (b1,  b2,  b3, 
 b4, and  b5) depend on the training set used for model 
fitting and provide weights for the variables. We did not 
normalize the data provided to the model in order to 
make interpretation of the model easier. For example, 
the model formula tells us that increasing the number 
of events with high TCPP density increases the likeli-
hood of cancer, consistent with our previous results 
[16].

The final step of the pipeline (Fig. 6) is to make the can-
cer/non-cancer assignment. The model returns a value in 
the range of [0, 1]. Whether a given sample is classified 

as cancer depends on having the model return a value 
greater than a predetermined cutoff. If the value is less 
than or equal to the cutoff, the sample is classified as 
non-cancer. A rational cutoff can be selected by stepping 
through cutoff values between 0 and 1 and measuring the 
true positive and false positive calls as compared to the 
known group category at each step. Figure 7A shows the 
result of this process as a receiver operating characteris-
tic (ROC) curve, with an area under the curve (AUC) of 
0.89. The assay achieved its best performance at discrimi-
nating cancer from non-cancer at a threshold of 0.28 
(Fig. 7B, solid vertical line).

Performance of CyPath Lung
We evaluated the performance of CyPath Lung for the 
122 non-cancer and 28 cancer samples described in 
Table  1 and for an additional 32 samples (26 non-can-
cer and 6 cancer; Table 2) processed on a different FCM 
instrument (Navios EX). The same model with the same 
coefficients was used for both instruments, but the cutoff 
for the Navios samples was 0.5, based on the ROC curve 
for these samples. The results shown in Table 3 demon-
strate that CyPath Lung performed very well with sen-
sitivity, specificity, and accuracy all > 80% for the LSRII 
samples and very similar numbers for the smaller set of 
Navios EX samples. For both flow cytometry platforms 
we obtained a very robust negative predictive value 
(NPV) ≥ 95%.

The assay also performed remarkably well, with a sen-
sitivity of 92% and specificity of 87% and an area under 
the ROC curve of 94%, if we restricted the analysis to 
cases where LDCT detected no nodules or only nod-
ules < 20 mm in diameter (Table 3, “nodules all < 20 mm”). 
We do not consider the difference in the sensitivity and 
specificity between the full data set and the subset with 
nodules < 20 mm significant; however, it is evidence that 
the test performed equally well for difficult to diagnose 
individuals with smaller nodules. Furthermore, CyPath 
Lung performed well for all tumor types represented and 
at all disease stages, including I and II (Tables 4, 5).

Each of the retained predictors contributed signifi-
cantly to the model (Wald Test P < 0.05) and remov-
ing them individually had a negative impact on the 

Fig. 4 Heuristics‑guided Singlets Gating. A In some cases, cells with intermediate FVS510 signal and high SSC‑A throw off singlets gating on the 
full viable cell population (e.g., lower left corner below zero or top left point higher than bottom right). B A temporary gate is set on SSC‑A to 
exclude problematic events above 5 ×  104. C A singlets gate is fitted to the restricted population (red polygon) and adjusted to include the upper 
diagonal by setting the upper right corner to 2.5 ×  105 on both axes (navy dashed polygon). D Temporary gates are removed and the tweaked 
singlets gate (red polygon) applied to the full viable population (compare the adjusted polygon in D to the original red polygon in A. E In some 
cases, a population representing > 10% of singlets (red oval) lies between 2.5 (logicle scale) and the viability threshold. F Population mixture analysis 
highlights the difference in signal distribution of the rightmost population identified by the oval in E (blue curve) relative to the bulk of the events 
left from the oval in E (black curve) and suggests a natural cutoff at 2.5 (dashed red line) in these unusual cases. G The adjusted viability cutoff (red 
line) replaces the one found by automated tail gating (dashed black line). H Finally, a new singlets gate for the refined viable cell population is 
calculated (red polygon). A–D are from a different patient sample than E, F to illustrate the heuristics applied in singlets gating

(See figure on next page.)
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ability to correctly classify cancer and non-cancer sam-
ples (Table 6). Age is a well-established clinical correlate 
to lung cancer [42], as it is in our model; nevertheless, the 
correlation between age and the model value is not over-
whelming in either LSRII or Navios EX samples (Fig. 8) 
with "cancer" called in some younger patients and "non-
cancer" in many older ones. In fact, the exclusion of the 
 CD206lowCD3/CD19CD66bmid signal resulted in as many 
misclassified samples as the exclusion of age and its inter-
action with FVS510-A/log10FSC-A R2 (Table 6).

Discussion
To our knowledge, this study is the first that combines 
automated flow cytometric analysis with machine learn-
ing to predict the presence of lung cancer from sputum 
samples. Sputum as diagnostic material provides a snap-
shot of the tumor itself, of its microenvironment (ME), 
and of its field of cancerization (FoC). Expert cytological 
analysis of sputum can detect cancerous and pre-malig-
nant cells [15], but it is a laborious approach that does 
not lend itself well to large-scale screening. Automated 
image processing has been used with some success to 
capture malignancy-associated changes in cells but is 

hampered by technical complexity and the low numbers 
of cells analyzed [43].

The case for moving to a high-throughput, automated 
flow-based approach combined with machine learning 
is thus compelling: (a) the assay can be put into routine 
lab use without requiring expert evaluation of samples 
or being subject to operator bias; (b) the entire spu-
tum sample can be rapidly analyzed; and (c) numerical 
analysis can capture complex interactions between lung 
cancer, ME, and FoC cells which would be difficult for 
individuals to detect reliably. Our discovery during assay 
development of the predictive value of viability staining 
density, for example, suggests a link with apoptosis that 
merits further study. Our model also indicates that spe-
cific immune cell populations may be involved. Neither 
of these predictors was on our radar before we began 
model building, but in retrospect the importance of both 
processes early in cancer development is consistent with 
previous reports [42, 44].

Earlier versions of CyPath Lung relied solely on the 
porphyrin to distinguish cancer from non-cancer sam-
ples [16]. The current automated flow cytometry-based 
test leverages viability staining and antibody profiling to 
capture additional aspects of tumorigenesis. One of the 

Table 1 Patient characteristics of LSRII validation samples

n: number of samples; SD: standard deviation

Characteristic Non‑cancer, n = 122 Cancer, n = 28

Patient demographics

 Age—years median (range) 65 (53‑75) 73 (54–79)

 Male n (%) 57 (46.7) 21 (75.0)

 Female n (%) 65 (53.3) 7 (25.0)

Race

 White n (%) 110 (90.2) 25 (89.3)

 Non‑white n (%) 12 (9.8) 3 (10.7)

Ethnicity

 Hispanic n (%) 15 (12.3) 8 (28.6)

 Non‑Hispanic n (%) 104 (85.2) 18 (64.3)

 Not available n (%) 3 (2.5) 2 (7.1)

Smoking Status

 Never n (%) 0 (0) 1 (3.6)

 Former n (%) 69 (56.6) 15 (53.6)

  Pack years mean (SD) 56.1 (24.3) 53.3 (36.3)

 Current n (%) 53 (43.4) 12 (42.9)

  Pack years mean (SD) 55.2 (26.5) 51.8 (14.1)

Comorbidities

 COPD n (%) 81 (66.4) 13 (46.4)

 Emphysema n (%) 23 (18.9) 6 (21.4)

 Asthma n (%) 16 (13.1) 4 (14.3)

 Bronchitis n (%) 7 (5.7) 3 (10.7)

 Cancer n (%) 17 (13.9) 3 (10.7)
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cancer predictors in CyPath Lung reflects an increase in 
immune cells in the cancer group. Since alterations in the 
immune system constitute an early response of the body 
to the presence of a tumor [45], it is possible that CyPath 
Lung can detect certain cancers before they are detecta-
ble by imaging. Others have shown that the performance 
of a sputum-based test for early lung cancer detection 
can significantly increase when different types of meas-
urements are combined; for example, cytology with 
genetic mutations [46] or microRNAs and methylation 
biomarkers [47]. Although we use one technology plat-
form to measure different cancer-related processes, the 
additional parameters are likely contributing to the per-
formance improvement from the slide-based assay to the 
flow cytometry-based assay (Fig.  7). Moreover, the flow 
cytometry-based assay reads the entire sample, which 
was also predicted to increase test performance [16].

Nearly 95% of participants in this study fulfilled the 
criteria for lung cancer screening most recently issued 

by the US Preventive Services Task Force [48]. Although 
our study group can be considered a sample from those 
eligible for lung cancer screening (one of the target pop-
ulations for CyPath Lung), the sampling was small with 
minorities being underrepresented, as were females in 
the cancer groups. Moreover, the cancer prevalence in 
our study was just below 19% for both data sets, which 
is considerably higher than in a lung cancer screening 
population [1] or in a patient group with lung nodules 
between 7 and 19  mm (the other target population for 
CyPath Lung) [49]. Another limitation of our study is the 
lack of long-term follow-up of non-cancer participants to 
confirm they were indeed lung cancer-free. We intend to 
conduct a larger prospective clinical trial that addresses 
these limitations.

In its 2017 Official Policy Statement, the American 
Thoracic Society (ATS) stated that clinical usefulness 
of a novel biomarker should be evaluated by estimating 
the minimal accuracy required for that biomarker [50]. 
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Fig. 6 CyPath Lung data processing pipeline. The schematic 
represents the following main elements: QC measures (top two 
diamonds), retrieval of the data and running the model (two squares 
in the middle) and final determination whether the sample is likely to 
be cancer or not (bottom diamond)
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Table 2 Patient characteristics of Navios EX validation samples

n: number of samples
a Individual values are shown instead of mean (SD)

Characteristic Non‑cancer, n = 26 Cancer, n = 6

Patient demographics

 Age—years mean (Range) 65 (52–79) 64 (49–76)

 Male n (%) 15 (57.8) 6 (100)

 Female n (%) 11 (42.3) 0

Race

 White n (%) 20 (76.9) 5 (83.3)

 Non‑white n (%) 2 (7.7) 1 (16.7)

 Not available n (%) 4 (15.4) 0

Ethnicity

 Hispanic n (%) 5 (19.2) 0

 Non‑Hispanic n (%) 17 (65.4) 6 (100)

 Not available n (%) 4 (15.4) 0

Smoking status

 Never n (%) 0 1 (16.7)

 Former n (%) 14 (53.8) 2 (33.3)

  Pack years mean (SD) 60.1 (27.3) 90 and  25a

 Current n (%) 11 (42.4) 3 (50.0)

  Pack years mean (SD) 52.4 (27.7) 75.0 (37.0)

 Not available n (%) 1 (3.8) 0

Comorbidities

 COPD n (%) 9 (34.6) 3 (50.0)

 Emphysema n (%) 4 (15.4) 1 (16.7)

 Asthma n (%) 1 (3.8) 0

 Bronchitis n (%) 1 (3.8) 0

 Cancer n (%) 1 (3.8) 2 (33.3)

 Not available n (%) 2 (7.7) 0
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Table 3 CyPath lung performance

a 0.83% cancer prevalence in NLST 2013 [1]
b 2.9% cancer prevalence in NLST 2013 LDCT positive cases only
c Sensitivity/(1 − specificity) see Pepe et al. [37]

Wilson confidence intervals (CIs) for sensitivity, specificity and accuracy were calculated using BinomCI (“method = Wilson”) from the R package DescTools [38]

Area under ROC curve CIs were determined by bootstrapping using the R package pROC [39]

CIs of the positive and negative predictive values were calculated using the R package bdpv [40] per Mercaldo et al. [41]

LSRII LSRII (nodules all < 20 mm) Navios

Total samples 150 132 32

Cancer 28 13 6

Non‑cancer 122 119 26

Sensitivity (95% CI) 0.82 (0.64–0.92) 0.92 (0.67–0.99) 0.83 (0.44–0.97)

Specificity (95% CI) 0.88 (0.81–0.92) 0.87 (0.80–0.92) 0.77 (0.58–0.89)

Accuracy (95% CI) 0.87(0.80–0.91) 0.88 (0.81–0.92) 0.78 (0.61–0.89)

Area under ROC curve (95% CI) 0.89 (0.83–0.96) 0.94 (0.89–0.99) 0.85 (0.71–0.98)

Positive predictive value (95% CI)

 Cancer prevalence in data set 0.61 (0.48–0.72) 0.44 (0.33–0.57) 0.45 (0.27–0.65)

 Prevalence reported in high‑riska 0.05 (0.03–0.09) 0.06 (0.04–0.92) 0.03 (0.01–0.06)

 Prevalence in LDCT  positiveb 0.17 (0.11–0.25) 0.18 (0.12–0.26) 0.10 (0.05–0.19)

Negative predictive value (95% CI)

 Cancer prevalence in data set 0.96 (0.91–0.98) 0.99 (0.94–1.00) 0.95 (0.77–0.99)

 Prevalence reported in high‑riska 1.00 (1.00–1.00) 1.00 (1.00–1.00) 1.00 (1.00–1.00)

 Prevalence in LDCT  positiveb 0.99 (0.99–1.00) 1.00 (0.98–1.00) 0.99 (0.96–1.00)

Positive diagnostic likelihood ratio (PDLR)c 6.31 7.08 3.61

Table 4 Performance of CyPath lung by tumor type and stage (LSRII)

n: number of samples; NA: information not available

Tumor type
(Carcinoma)

n (%) # of cancers correctly 
predicted

Stage n (%) # of cancers 
correctly 
predicted

Non‑small cell 1 (3.6) 1 I 10 (35.7) 8

Adeno 11 (39.3) 8 II 3 (10.7) 2

Squamous cell 13 (46.4) 11 III 6 (21.4) 5

Large cell 1 (3.6) 1 IV 6 (21.4) 5

Small cell 2 (7.1) 2 NA 3 (10.7) 3

Table 5 Performance of CyPath lung by tumor type and stage (Navios EX)

n: number of samples; NA: information not available
a Biopsy was not performed because of comorbidities. However, this patient is treated as having lung cancer due to the presence of a 24 mm nodule and other factors

Tumor type (Carcinoma) n (%) # of cancers correctly 
predicted

Stage n (%) # of cancers 
correctly 
predicted

Non‑small cell 0 I 3 (50.0) 2

Adeno 3 (50.0) 2 II 0

Squamous cell 2 (33.3) 2 III 2 (33.3) 2

Large cell 0 0 IV 0

Small cell 0 0 NA 1 (16.7) 1

NAa 1 (16.7) 1
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A positive CyPath Lung test may help evaluate inter-
mediate-sized lung nodules in LDCT-positive patients. 
The minimal accuracy ([sensitivity/(1-specificity] or 
positive diagnostic likelihood ratio (PDLR)) for CyPath 
Lung needs to be ≥ [(1-prevalence)/prevalence] × R/
(1 − R)] according to the ATS statement. Assuming the 
threshold (R) – above which invasive follow up would 
be worthwhile - to be the frequency of cancer (4.8%) in 
the National Lung Screening Trial (NLST) population 
with intermediate nodules (7–19 mm in diameter) and 
using a cancer prevalence of 3.8% in the LDCT-positive 
population based on data of the NLST, we calculated 
the PDLR of CyPath Lung should be at least 1.28 [37, 
50], which is a threshold met comfortably by our assay 
(Table 3).

The ATS statement also presents a use case where 
screening is expanded to include participants currently 
ineligible for LDCT screening [50]. Using a hypotheti-
cal 1/500 prevalence of cancer and a harm threshold of 
0.83%, a PDLR of 4.18 is estimated as the minimal accu-
racy for a useful test, a level met by the larger validation 
group of CyPath Lung (Table  3, LSRII). Using a hypo-
thetical prevalence of 1/400 instead of 1/500 would 
yield a PDLR of 3.35, which both validation groups 
satisfy. When clinical utility is confirmed by future 
studies, CyPath Lung could serve to expand early lung 
cancer screening to relatively underserved populations 
such as younger females and male African American 
smokers [51, 52].

Table 6 Impact of model predictors on classification

a Full model as shown in Fig. 5
b 150 LSRII samples from Table 1
c Including interaction term age:FVS510-A/log10FSC-A R2

Predictor dropped from model Cancer  calledb Non‑cancer  calledb Total (Cancer 
and Non‑
cancer)b

Correct Incorrect Correct Incorrect Incorrect

Nonea 23 5 107 15 20

agec 9 19 111 11 30

TCPP/log10SSC‑A R3 18 10 105 17 27

CD206lowCD3/CD19CD66bmid 20 8 100 22 30

FVS510‑A/log10FSC‑A  R2c 19 9 107 15 24

age:FVS510‑A/log10FSC‑A R2 18 10 104 18 28

Fig. 8 Correlation of age with model value. A LSRII samples. B Navios EX samples. The dashed lines indicate the cutoff value for the respective 
sample set above which a sample is diagnosed as cancer
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Conclusion
CyPath Lung is a non-invasive, sputum-based test for the 
early diagnosis of lung cancer. It uses a flow cytometric 
platform to analyze the cellular content of sputum with 
the analysis being fully automated and thus unbiased. 
The test is robust to differences in sample handling and 
processing and captures important predictive factors of 
early lung cancer carcinogenesis. The test performs well 
at 82% sensitivity and 88% specificity and achieves com-
parable performance when applied to an independent set 
of samples collected on a different flow cytometer. The 
test is also accurate in early stages (I and II) and in cases 
with nodules < 20 mm.
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